
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 10, OCTOBER 2013 1651

Control-Point Representation and Differential
Coding Affine-Motion Compensation

Han Huang, Student Member, IEEE, John W. Woods, Fellow, IEEE, Yao Zhao, Senior Member, IEEE, and Huihui Bai

Abstract—The affine-motion model is able to capture rotation,
zooming, and the deformation of moving objects, thereby pro-
viding a better motion-compensated prediction. However, it is
not widely used due to difficulty in both estimation and efficient
coding of its motion parameters. To alleviate this problem, a
new control-point representation that favors differential coding
is proposed for efficient compression of affine parameters. By
exploiting the spatial correlation between adjacent coding blocks,
motion vectors at control points can be predicted and thus
efficiently coded, leading to overall improved performance. To
evaluate the proposed method, four new affine prediction modes
are designed and embedded into the high-efficiency video coding
test model HM1.0. The encoder adaptively chooses whether
to use the new affine mode in an operational rate-distortion
optimization. Bitrate savings up to 33.82% in low-delay and
23.90% in random-access test conditions are obtained for low-
complexity encoder settings. For high-efficiency settings, bitrate
savings up to 14.26% and 4.89% for these two modes are
observed.

Index Terms—Affine-motion model, high-efficiency video cod-
ing (HEVC), motion-compensated prediction (MCP), motion
estimation, video coding.

I. Introduction

IN state-of-the-art video coders, motion-compensated pre-
diction (MCP) is very important to obtain high coding effi-

ciency [1]. In conventional MCP methods, the block matching
algorithm is widely adopted. As shown in Fig. 1(a), a best
matching block in a reference frame, after shifting by the
motion vector (MV) �v, is used to predict the current block.
Block matching assumes that the motion in a given block is
uniform, i.e., employs a translational motion model. Thus, it
fails to capture rotation, scaling, and other deformations of

Manuscript received October 04, 2012; revised December 19, 2012; ac-
cepted February 08, 2013. Date of publication March 27, 2013; date of
current version September 28, 2013. This work was supported in part by
the 973 Program under Grant 2012CB316400; the National Natural Science
Funds for Distinguished Young Scholar under Grant 61025013; the National
Natural Science Foundation of China, under Grant 61210006, 61202240,
60903066, 61272051, and 6101393; JPNSF(BK2011455), and the Program
for Changjiang Scholars and Innovative Research Team in University. This
paper was recommended by Associate Editor L. Zhang.

H. Huang, Y. Zhao, and H. Bai are with the Institute of Information
Science, Beijing Jiaotong University, Beijing 100044, China (e-mail: huang-
han@bjtu.edu.cn; yzhao@bjtu.edu.cn; hhbai@bjtu.edu.cn).

J. W. Woods is with the Department of Electrical, Computer, and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA 12180-3590
USA (e-mail: woods@ecse.rpi.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2013.2254977

Fig. 1. (a) Block matching. (b) Generalized block matching. (c) Mesh
matching [2].

moving objects. To solve this problem, higher order motion
models were introduced in video coding.

Approaches to higher order motion models include mesh
matching [3], [4] and control grid interpolation [5]. In these
mesh-based methods, the motion is represented by displace-
ments of the so-called control points. Then, the image is
warped accordingly, producing a visually more pleasing MCP
frame than does block matching. An example of mesh match-
ing is shown in Fig. 1(c). Since a control point is shared
by its surrounding patches, the overhead of transmitting the
motion information is generally similar to that of fixed-sized
block matching. However, the noncausal spatial dependence
among the control points makes operational rate-distortion
optimization difficult, especially for variable size adaptation.
In [6] and [7], empirical thresholds were used for splitting.
Other mesh-based techniques include the closed-form solution
[8] and the content-based mesh [9], [10]. In another approach,
higher order motion models are adopted by generalizing block
matching [11], [12], as shown in Fig. 1(b), allowing reference-
frame blocks to be deformed for better prediction but with
the penalty of increased motion parameters per block. In
[12], the authors proposed an orthonormalization scheme that
makes the motion parameters less sensitive to quantization.
Motion-assisted merging and motion-model adaptation were
also developed to compress the polynomial parameters. Other
block-based approaches can be found in [13]–[17].

While not used in standard-based video coders, higher order
motion models have been found useful in research codecs. In

1051–8215 c© 2013 IEEE

1652 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 10, OCTOBER 2013

[18], a global affine-motion model was introduced to generate
better reference frames. A 4-D vector quantizer was developed
in [19] to code the scaling parameters in the multiple global
affine-motion model. In [20], a single global affine transform
was adopted based on image alignment. In [21], a feature-
based robust global-motion method was used to estimate
the homography transform between the current and reference
frames. Then, a parametric SKIP mode was designed based on
the estimated global motion. In [22], the authors employed an
in-loop postprocessing method benefiting from the advantages
of affine-motion prediction and using conventional block MVs.
A preprocessing method was proposed in [23]. Muhit et al.
[24] proposed an elastic motion model that allows larger
blocks to be used. Other researchers focused their work on
zoom motion [25]–[28]. In our previous work [29], a coding
block was regarded as a part of a mesh grid consisting of
two triangular patches. A partial mesh connection concept
was adopted to reduce the number of MVs. In [30], we
introduced affine motion into SKIP/DIRECT prediction modes
and demonstrated its efficiency. In this paper, the idea is
generalized to a new control-point representation of affine
motion favoring efficient differential motion-vector coding.

This paper is organized as follows. The proposed block-
based affine-motion model is presented and discussed in
Section II. Followed by implementations in Section III, four
new affine modes are designed and embedded into the high-
efficiency video coding (HEVC) test model HM1.0. In Section
IV, numerous experimental results are shown and discussed.
Bitrate savings compared to the original HM1.0 coder are
up to 33.82% in the low-delay IPPP mode and 23.90% in
the random-access hierarchical B mode under low-complexity
encoder settings. For high-efficiency encoder settings, bitrate
savings are up to 14.26% and 4.89% for these two modes,
respectively. Finally, conclusions are drawn in Section V.

II. Proposed Block-Based Affine-Motion Model

and Differential Coding Method

The 2-D affine transform is described as{
x′ = ax + by + e

y′ = cx + dy + f
(1)

where (x, y) and (x′, y′) are a pair of corresponding locations in
the current and reference frames, respectively, and a, b, c, d, e,
and f are the affine parameters. Let (vx, vy) = (x − x′, y − y′)
be the apparent motion at location (x, y) in the current frame;
it then follows that{

vx = (1 − a)x − by − e

vy = (1 − c)x − dy − f
(2)

which is called the affine-motion model. In contrast to the
conventional block matching algorithm, the matching block
in the reference frame is allowed to be warped or deformed
for better MCP. The cost is the transmission of more motion
parameters, six instead of two per block. In video coding,
the motion parameters are transmitted as side information that
can be significant at low total bitrates. It has thus been found
that the compression of this motion information is essential to

Fig. 2. Control-point representation of a square region.

improve overall coding performance. The resulting increase
in the number of motion parameters could neutralize the
advantages of affine-motion compensation. Therefore, efficient
coding of motion parameters becomes more critical for the
affine-motion model.

Direct coding of the polynomial coefficients in (1) re-
quires a special quantizer. In [12], the authors proposed to
orthonormalize the affine parameters since they are sensitive
to quantization. In [31], the affine coefficients were examined
by deriving a quadratic relationship between the MCP residual
signal and the quantization step size. In [15], the affine
parameters were coded as three symbols: the nonzero pattern,
the amplitudes, and the signs. For efficient encoding, the
probability distributions of these symbols were addressed and
various context types were designed to exploit correlations
between these parameters. Alternatively, the affine-motion
parameters can be represented by displacements at control
points as translational MVs. In this way, the existing motion-
vector coding method can be employed. This also solves the
problem of MV prediction across different motion models
since it is achieved by predicting the translational motion at
the designated locations of the control points. In the following
section, the proposed control-point representation is described
and its advantages in differential motion-vector coding are
discussed.

A. Proposed Control-Point Representation

Given a square region X of size S × S, set the coordinate
system as shown in Fig. 2. The top and left three corners,
i.e., (0, 0), (S, 0), and (0, S), can serve as control points,
denoted as (xi, yi), i = 0, 1, 2. Let their translational MVs
be �vi = (vxi

, vyi
), i = 0, 1, 2. The matrix V � (�v0, �v1, �v2)

will be referred to as the affine-motion matrix. The displaced
control points that deform X are (x′

i, y
′
i) = (xi − vxi

, yi − vyi
).

By substituting (vx, vy) and (x, y) into (2) with (vxi
, vyi

)
and (xi, yi), we will have six equations with six unknowns
a, b, c, d, e, and f . Solving these equations, we have

⎧⎪⎨
⎪⎩

a = 1 − vx1 − vx0

S
, b =

vx0 − vx2

S
, e = −vx0

c = 1 − vy1 − vy0

S
, d =

vy0 − vy2

S
, f = −vy0 .

(3)

By (2) and (3), we get⎧⎪⎨
⎪⎩

vx =
vx1 − vx0

S
x +

vx2 − vx0

S
y + vx0

vy =
vy1 − vy0

S
x +

vy2 − vy0

S
y + vy0 .

(4)

HUANG et al.: CONTROL-POINT REPRESENTATION AND DIFFERENTIAL CODING FOR AFFINE-MOTION COMPENSATION 1653

Fig. 3. Comparison of control-point representations: our method and others
in the literature. Black circles indicate pixel samples, crosses indicate the
locations of control points, and the gray area indicates the coding block. (a)
Our method. (b) Servaris’ [14]. (c) Mathew’s [16]. (d) Lakshman’s [17].

Receiving the affine-motion matrix V at the decoder side, the
motion field over X can be derived by (4).

Note that we need to evaluate this motion field at discrete
pixel locations for MCP. Attention should be paid to the
relation between the block size in pixels and the square size
S × S introduced above. Let m × m be the size of block in
pixels, so the actual pixel locations in the first row, say, are 0
to m−1. If we choose the square size to just cover this block,
we get S = (m − 1) with the next motion square starting at
position (0, m) and no overlap between neighboring motion
squares. This would create a difficulty in differential motion-
vector coding.

Alternatively, we chose to slightly overlap the motion
squares with control-point locations as shown in Fig. 3(a),
where a coding block is delineated by the gray area. The
small circles indicate pixel samples and those with crosses
inside indicate locations of control points. The bottom-right
one is a nonfree control point and its motion is determined
by the affine-motion model derived by �vi, i = 0, 1, 2. Then,
the four control points form a one-cell mesh grid covering
X , represented by dashed lines in Fig. 3(a). The mesh grid
covers one additional column and one additional row to the
right and bottom of the coding block. So, S is then equal to
m. Note that the motion at the additional row and column,
which belongs to other coding blocks, is not derived from the
current mesh grid. There are two advantages of our control-
point setting. One is that m is usually some power of 2
which can reduce computation by replacing division in (4)
with right shifting. The other and main advantage is that the
mesh grids of neighboring blocks are overlapped with each
other, which makes the prediction of affine-motion matrices
straightforward, as will be discussed in Section II-C.

Fig. 4. Statistics of X- and Y -component of ��vhor and ��vver , obtained by
coding BQSquare, BlowingBubble, Racehorses, and BasketballPass under the
low-delay high-efficiency test condition.

B. Some Notes on Affine-Motion Field

By (4), we know that the affine-motion field varies linearly
in (x, y). After discretizing, the MV difference is ��vhor =
((vx1 − vx0)/S, (vy1 − vy0)/S) between two consecutive hori-
zontal locations and is ��vver = ((vx2 − vx0)/S, (vy2 − vy0)/S)
for vertical ones. To prevent the block being overdeformed
and maintain the continuity of the motion field, ��vhor and
��vver should not be large. Initially, they were constrained to
be less than 1/4 pixel in both directions. This is because the
translational MV in our implementation is 1/4 pixel accuracy
to which the MVs at control points are also quantized. If ��vhor

or ��vver is larger than 1/4 pixel, then it can be split into two
mesh grids. However, our experiments showed that ��vhor and
��vver are usually smaller. An example is shown in Fig. 4.
Thus, both horizontal and vertical components of |�v1 − �v0|
and |�v2 −�v0| are constrained to be less than S/8 in this paper.

A scan-line algorithm could be adopted to evaluate the
motion field for MCP. Given our control-point setting as
described in Section II-A, the MV at the top-left pixel location
(0, 0) is equal to �v0. When moving horizontally, the MV at the
current pixel location is obtained by adding ��vhor to its left
neighbor. For the next line, the MV is obtained by adding
��vver to its neighbor above. By doing so, the computational
overload is reduced.

C. Affine-Motion-Matrix Predictors for Differential Coding

Differential coding is usually employed for efficient motion-
vector coding. It has been shown in [32] that a competing
framework with multiple candidate predictors can significantly
improve compression of the motion information. Here, we
apply the same concept to code the affine-motion matrix. Our
derivation of its predictors is described as follows.

As shown in Fig. 5, motion at A, B, C can be used to predict
�v0, motion at D, E can be used to predict �v1, and motion at
F, G can be used to predict �v2. More specifically, the mesh grid
of the current coding block overlaps those of the neighboring
blocks through our chosen control-point representation. The
spatial location of �v0 actually coincides with that of A, B,
and C in the neighboring mesh grids. Similarly for �v1 and
�v2. Denoting Pi as the candidate set for �vi, we set P0 =
U{�vA, �vB, �vC}, P1 = U{�vD, �vE}, and P2 = U{�vF , �vG}, where
U is defined as an operator that removes replicas. To reduce
the overhead of sending the predictor indices, combinations of
Pi are obtained by � = P0 × P1 × P2. Then, only one index
is signaled to the decoder instead of 3.

1654 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 10, OCTOBER 2013

Fig. 5. Predictions for translational MVs at control points.

Let V̂ = (�v0, �v1, �v2) ∈ � be an affine-motion-matrix
predictor. Then, V̂ is considered as invalid if any component
of |�v1 − �v0| or |�v2 − �v0| is greater than S/8. The predictor
index is unary coded, so the candidate set should be or-
dered by descendant likelihood for efficient coding. In this
paper, the candidate set is arranged in the ascending order of
D(V̂) = ||�v0 −�v1||1 +||�v2 −�v1||1, a measure of the deformation,
since a candidate predictor matrix V̂ is more likely to have a
smaller value of D(V̂) [30].

D. Discussion of the Proposed Scheme and Other Methods in
the Literature

In [14], affine motion is represented by three MVs at ver-
tices of an equilateral triangle positioned around the centroid
of the block as shown in Fig. 3(b). The authors focused on
the content-based variable block partition for motion com-
pensation. The control-point representation is proposed for
affine-motion estimation and the coding of affine parameters
is not discussed. Mathew and Taubman propose an affine-
motion model represented through MVs at nominal locations
[16] depicted in Fig. 3(c). They focused on the leaf merging
technique and its use in wavelet-based scalable video coding.
In [17], the affine-motion parameters are denoted by �v0 at the
centroid of the block to represent the translational component,
and then two components dleft = �v1 − �v0 and dright = �v2 − �v0

that represent the relative warping with respect to the centroid.
Here, �v1 and �v2 are the displacements at the top-left and top-
right corners of the current block. For coding, �v0 is differen-
tially coded as a translational MV using the median predictor
as in H.264/AVC [33]. Then, a subset of the neighboring
blocks is chosen based on their differences in �v0 as compared
to the current block. The warping parameters of these blocks
are mapped to the current block size; then, similarly the
medians are used for predicting current warping parameters.
As described previously, the prediction of affine parameters
in [17] is done separately for the translational component and
warping parameters.

Generally, the affine parameter representations could be
transformed to each other. The coding methods are the essen-
tial differences between our scheme and the others. Assume
that the current block X and its neighboring blocks are in
the same moving object since otherwise the prediction from
neighbors usually is not accurate. In the case of one affine-
motion model in the region, the translational components of
X and its neighboring blocks should have different values due
to the deformation of the moving object. In other words, the

Fig. 6. Example of prediction of affine parameters in [17].

prediction of the translational component, �v0 in [17], from the
translational component in a neighboring block often will not
be accurate. The same problem exists in a direct prediction of
the parameters in (2), where the translational component (e, f)
is actually the MV at the top-left corner. In the case of several
affine-motion models, �v0 may be well predicted; however, dleft

and dright) cannot be accurately predicted as well. Let us say
that �v0 of X is equal to �v0 of its left neighbor A for example,
as shown in Fig. 6. Note that the motion across the boundary
should be continuous, then �vA

2 = �vX
1 , i.e., �vA

0 +dA
right = �vX

0 +dX
left.

It requires that dA
left = dA

right for �vX
0 = �vA

0 and dX
left = dA

left. But
generally dA

left and dA
right are not equal. Thus, either the motion

across the boundary is not smooth or the predictions of �v0 and
dleft from A cannot be accurate. Similarly, the prediction of �v0

and dright) usually cannot be accurate. Another explanation is
that the prediction of dX

left from dA
left is actually predicting �vX

1 by
�vA

1 (when �vX
0 = �vA

0). Now, this prediction may not be accurate
since the locations of the two MVs are distanced by the size
of A. We would rather use �vA

2 to predict �vX
1 .

In this paper, differential coding of affine parameters is
done by predicting the translational MVs at designated control
points. Such a prediction should be accurate as long as the
current block and its neighbors belong to the same moving
object. Another advantage of the proposed scheme is that the
prediction can still work even if warping parameters of all
the neighboring blocks are zero due to rate-distortion tradeoff.
However, in [17] and other schemes that directly predict the
warping parameters, the predictors will have zero values in
this case.

III. Implementations and Adaptive Motion

Modeling

Our proposed method is implemented within the HEVC test
model HM1.0. Analogous to the translational interprediction
modes in this test model (coder), four new affine modes
are designated, namely AF SKIP, AF DIRECT, AF INTER,
and AF MERGE. In this section, we will first make an
overview of prediction modes already in HM1.0 and then
introduce the new affine modes that are integrated into our
version of this coder.

HM1.0 is the first HEVC test model that is established by
the joint collaborative team on video coding [34]. It defines a
quadtree structure based on a coding unit (CU), an example
of which is shown in Fig. 7(a). A CU is a basic unit for
compression, a 2N ×2N square block. It may take sizes from
8 × 8 up to a predefined maximum. Each CU can contain one

HUANG et al.: CONTROL-POINT REPRESENTATION AND DIFFERENTIAL CODING FOR AFFINE-MOTION COMPENSATION 1655

Fig. 7. (a) Quadtree structure of CU. (b) PU structures.

or multiple prediction units (PUs). A PU is a basic unit for
intra/interframe prediction and can be one of the four types of
partitions: 2N ×2N, 2N ×N, N ×2N, and N ×N as shown in
Fig. 7(b). Depending on the PU structure, four interprediction
modes and two intraprediction modes (partition 2N × 2N

and partition N × N) are defined together with the powerful
SKIP and DIRECT modes. Mode decision is performed by
operational rate-distortion optimization. Concretely, the coder
selects the best mode for a given CU by minimizing

Jmode = SSE + λmodeBmode (5)

where SSE is the sum square error of the reconstructed signal
and Bmode is the cost of this decision expressed in bits. The
Lagrangian parameter λmode is a constant value determined
by a supplied quantization parameter that encodes the chosen
quantizer base step size. For variable size adaptation, a full
quadtree is first generated; then, a bottom-up pruning algo-
rithm [35] is performed.

The four new affine modes are defined at the CU level and
consist of one 2N × 2N-type PU. These new affine modes
are embedded into the existing rate-distortion optimized mode
decision process. Therefore, the encoder adaptively chooses
whether to use an affine mode or not based upon its relative
mode cost. An additional flag is signaled to the decoder to
indicate this mode decision. Specifically, the encoder first
encodes the mode information to indicate SKIP, DIRECT,
or INTER mode as in the original HM1.0 coder. Then, an
additional flag is sent to indicate whether an affine-motion
model is used. When an INTER mode and affine-motion model
is chosen, another flag is sent to indicate AF MERGE or
AF INTER mode. In the case of AF MERGE mode, the
merge direction is further signaled. In the following sections,
the new affine modes and the interpolation method for affine-
motion compensation are described in some detail.

A. Affine SKIP/DIRECT Modes

By exploiting the spatiotemporal correlation between adja-
cent coding blocks, SKIP and DIRECT modes are powerful
tools for improving coding efficiency [36]. Similar to existing
translational SKIP and DIRECT modes in HM1.0, two new
affine modes, namely AF SKIP and AF DIRECT modes are
introduced here. Instead of translational MVs, a set of affine-
motion-matrix predictor candidates is derived by referring to
the motion of nearest-neighbor previously coded partitions as
described in Section II-C. Then, a best predictor is chosen

by checking all possible candidates and selecting the one
that minimizes Jmode. This prediction is then used to derive
the affine-motion field for the current block. The differences
between SKIP and DIRECT modes are as follows [34].

1) The residual signal is coded in the DIRECT mode, but
in the SKIP mode, the residual signal is skipped and
the prediction signal is used to reconstruct the current
block.

2) The interprediction direction is signaled to the decoder
in the DIRECT mode, but the bidirectional prediction is
always assumed in the SKIP mode.

To be consistent with the HM1.0 test model, the maximum
number of affine-motion-matrix predictors is set to five. The
efficiency of these affine SKIP and DIRECT modes has been
shown in our previous work [30].

B. Affine-Merge Mode

In the new affine-merge mode (AF MERGE), the mesh cell
connection idea proposed [29] is incorporated into the block-
based affine-motion model. When merged to the left, �v0 and
�v2 are derived from the left neighbor, while �v1 is searched
to minimize Jmotion = SAD + λmotionR(��v1). When merged to
above, �v0 and �v1 are derived from the above neighbor, while �v2

is searched to minimize Jmotion = SAD + λmotionR(��v2), where
SAD is the sum absolute difference of the MCP signal and
the rate R(��vi) is the estimated number of bits to code ��vi.
The predictor for �v1 or �v2 is chosen from �v0 and the motion
derived by the neighbor grids, i.e., {�vD, �vE} and {�vF , �vG}.
Coding for �v1 or �v2 is the same as that of translational motion.
If there is more than one predictor, the predictor index is
signaled. Then, the motion difference is arithmetic-coded. The
best merge direction is the one that has a smaller value of
Jmode. Though the word “merging” is used here, it is different
from the merging techniques in [12] and [16], where motion
in the current block is assumed to be exactly the same as
that in the merging target. Here, two MVs of an affine-merge
mode block are derived from the neighbor and the third one
is differentially coded and transmitted.

C. Affine-Inter Mode

In the new affine-inter mode (AF INTER), a set of affine-
motion-matrix predictor candidates is derived as described in
Section II-C. Then, a best predictor is chosen by checking all
possible candidates and selecting the one that minimizes Jp =
SAD + λmotionBp. Here, Bp is the number of bits to code the
predictor index and λmotion =

√
λmode. Given the best predictor

V̂, the affine-motion matrix V∗ for the current CU is searched
by minimizing Jmotion = SAD + λmotionBmotion, where Bmotion

is the estimated number of bits to code �V = V∗ − V̂ and
is denoted as (��v0, ��v1, ��v2). In practice, motion estimation
is conducted by the following iteration. If V̂ is not available,
then block matching is used to find the initial values.

1) Given V̂, a search region (quadrilateral) is defined. The
deformation of the reference block by V∗ is constrained
such that it will not exceed the region. Set iteration
number k = 0.

1656 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 10, OCTOBER 2013

TABLE I

Encoder Settings

LL RL LH RH
Maximum CU size 64
CU depth 4
Residual quadtree (RQT) size (min./max.) 4/32
Maximum RQT depth INTER 2 3
Maximum RQT depth INTRA 1 3
Number of reference frames 1 per list
Luma interpolation DIF DCT-IF
Chroma interpolation Bilinear interpolation
Source bit depth 8
Increased bit depth 0 4
Entropy coding CAVLC CABAC
Generalized P-slice to B-slice OFF
Merge mode OFF
Adaptive loop filter OFF ON
Motion search range 64
Fast search ON
Fast encoder decision ON
Rate-distortion optimized quantization ON
Period of I-frame only first 32 only first 32
GOP Size 1 8 1 8
Hierarchical B coding OFF ON OFF ON
Low-delay coding structure ON OFF ON OFF

2) For i = 0, 1, 2, search ��vi that minimizes Jmotion =
SAD + λmotionR(��vi) while keeping the other two fixed
at the values obtained in the previous iteration. In this
paper, the full search algorithm is adopted to find ��vi

in a predefined window of range r.
3) k = k + 1. Check if either Jmotion is unchanged or k is

greater than a predefined maximum m. If not, go to step
2.

Note that Jmotion is nonincreasing in each iteration. After the
best affine-motion matrix V∗ is found, its predictor is refined
by choosing the one that minimizes Bp. To be also consistent
with the HM1.0 test model, the maximum number of affine-
motion-matrix predictors is set to five and the predictor index
is unary coded. If the number of valid predictors exceeds
five, we simply discard those with higher D(V̂) values. The
residual �V is coded by sequentially encoding ��vi, i = 0, 1, 2
using the same motion-vector difference-coding method as in
HM1.0.

D. Interpolation Method

Motion in an affine mode block is generally noninteger,
which requires interpolation in the reference frame. For the
luminance component, a rectangle circumscribes the deformed
block in the reference frame that is preinterpolated to 1/4 pixel
accuracy using the interpolation filter in HM1.0. Then, the
bilinear interpolation is performed within the rectangle if the
motion is beyond 1/4 pixel accuracy. For chroma components,
the simple bilinear interpolation is adopted as in HM1.0.

IV. Experimental Results and Discussion

In this section, we evaluate the proposed block-based affine-
motion model with the HM1.0 coder. As described in Section
III, four affine modes were designed and incorporated into the

TABLE II

Bitrate Savings in Terms of Y BD-Rate

Sequence Name Resolution Frames Y BD-Rate Savings (%)
LL RL LH RH

Kimono 1920×1080 240 @ 24 frames/s 0.08 0.02 0.97 1.04
RaceHorses 300 @ 30 frames/s 3.56 1.01 2.27 0.93
BQMall 600 @ 60 frames/s 5.39 2.18 3.95 1.41
PartyScene 832×480 500 @ 50 frames/s 16.59 12.20 5.16 2.28
BasketballDrill 500 @ 50 frames/s 1.45 0.87 2.51 0.64
RaceHorses 300 @ 30 frames/s 4.33 1.25 2.42 1.00
BQSquare 600 @ 60 frames/s 33.82 23.90 11.74 4.43
BlowingBubbles 416×240 500 @ 50 frames/s 10.35 6.67 4.28 1.93
BasketballPass 500 @ 50 frames/s 1.99 0.28 1.69 0.39
Flowervase 300 @ 30 frames/s 15.03 7.38 14.26 4.75
Foreman 300 @ 30 frames/s 6.40 2.69 4.05 1.91
Mobile 300 @ 30 frames/s 17.00 8.55 6.25 2.76
Flower 250 @ 30 frames/s 11.39 7.38 6.05 4.89
Football 352×288 260 @ 30 frames/s 1.14 -0.07 1.61 0.46
News 300 @ 30 frames/s 2.14 0.97 4.46 0.82
Stefan 90 @ 30 frames/s 10.14 4.78 5.02 3.53

TABLE III

Average Decreases in the Number of CUs and Average

Percentage of Samples Coded by the Affine Modes

Sequence Name Decreases in the Number of CUs (%) Average Affine Mode Coverage (%)
LL RL LH RH LL RL LH RH

Kimono 8.23 6.60 14.71 7.85 17.14 19.64 30.60 17.49

RaceHorses 5.83 3.84 10.23 3.52 21.45 16.22 29.13 11.70

BQMall 11.46 6.42 16.51 5.61 25.26 18.22 34.53 12.73

PartyScene 18.80 14.04 22.16 8.04 48.32 42.89 52.79 17.68

BasketballDrill 6.00 4.42 8.85 3.41 15.88 14.25 26.15 8.64

RaceHorses 7.93 4.08 9.05 3.22 25.72 17.58 27.73 11.11

BQSquare 23.68 22.75 29.87 12.04 56.16 58.33 60.54 22.06

BlowingBubbles 14.84 9.25 21.01 6.55 39.43 29.43 47.15 17.88

BasketballPass 5.01 3.27 6.79 2.64 18.04 13.55 23.00 8.69

Flowervase 21.94 15.71 31.20 12.80 28.63 24.49 43.78 23.87

Foreman 12.05 8.08 19.75 9.70 29.59 26.29 41.60 23.85

Mobile 14.96 10.89 21.91 11.40 49.48 38.44 53.34 24.30

Flower 11.35 12.33 22.70 15.94 40.65 35.86 47.84 32.11

Football 4.38 2.09 7.68 2.09 17.09 11.23 27.26 10.56

News 8.34 4.43 12.18 4.53 10.94 8.37 15.48 7.17

Stefan 10.54 6.58 20.69 13.36 37.58 30.01 47.84 26.66

HM1.0 coder. We will refer to the new coder as HM1.0+Affine
and compare it with the original HM1.0 coder. Experiments
were conducted with 16 test sequences under low-delay low
complexity (LL), random-access low complexity (RL), low-
delay high-efficiency (LH), and random-access high-efficiency
(RH) test conditions [37]. Some major encoder settings are
listed in Table I. The search range for AF MERGE and
AF INTER modes was set to 15 and 7 units of quarter pixel,
respectively. In high-efficiency encoder settings, we used a
single context for CABAC coding of each additional flag and
a uniform distribution was used for initialization.

A. Overall Performance

For each test sequence, four rate points were obtained
by coding with the QP values {22, 27, 32, 37}, and bitrate
savings were measured in terms of Y BD-rate savings [40]
as shown in Table II. Depending on the motion types in
different sequences, the performance of the new coder varies.
Maximum bitrate savings are 33.82% in LL, 23.90% in RL,
14.26% in LH, and 4.89% in RH test conditions. Compared

HUANG et al.: CONTROL-POINT REPRESENTATION AND DIFFERENTIAL CODING FOR AFFINE-MOTION COMPENSATION 1657

Fig. 8. Optical flow obtained by Sun et al. [38], [39]. The colors indicate
the flow magnitudes and red indicates large motion. (a) Frames 005–006 of
BQSquare. (b) Frames 001–002 of Flower.

to the original HM1.0 coder, the number of CUs produced by
the HM1.0+Affine coder is decreased for all test sequences
and test conditions as shown in Table III. This demonstrates
that larger blocks are chosen more often by enabling affine-
motion compensation, which also explains the gains obtained
by the new coder. Generally, bitrate reduction is high when
there is the larger decrease in the number of CUs and vice
versa. The usage of the affine modes or coverage, i.e., the
proportion of the time they are chosen, averaging over all
frames, and for each sequence, is shown in the right portion
of Table III. Again, we can observe that generally, the larger
the percentage of samples coded by affine modes, the greater
the bitrate reduction achieved.

In sequences BQSquare and Flower, the motion is mostly
caused by camera panning and changes linearly according to
the depth of the objects. Two examples are shown in Fig.
8. Such motion can be well captured by the affine-motion
model. Thus, bitrate reductions achieved by HM1.0+Affine are
significant. The peak signal-to-noise ratio performance curves
are plotted in Figs. 9 and 10. As can be seen from the figures,
the new coder outperforms the original HM1.0 coder at all rate
points under all test conditions. In the sequence BQSquare, the
affine mode coverage amounts to 60% of the whole clip. An
example is shown in Fig. 11, where the magenta areas indicate
coding in affine modes. An interesting phenomenon is that
the affine modes tend to appear on the object boundaries (red
sun umbrellas) and textured regions. On the other hand, the
smooth areas, where the translational motion compensation is
sufficient, are not coded by an affine mode.

In the head-and-shoulder sequence News, however, much
of the scene is static background and the motion of the ballet

Fig. 9. RD curves of coding sequence BQSquare. The average bitrate sav-
ings are 33.82% and 23.90% for low-delay and random-access test conditions
in low-complexity encoder settings, and 11.74% and 4.43% in high-efficiency
encoder settings. (a) Low complexity. (b) High efficiency.

Fig. 10. RD curves of coding sequence Flower. The average bitrate savings
are 11.39% and 7.38% for low-delay and random-access test conditions in
low-complexity encoder settings, and 6.05% and 4.89% in high-efficiency
encoder settings. (a) Low complexity. (b) High efficiency.

dancers displayed on the background TV screen is hard to
capture. Therefore, the bitrate saving for this sequence is small.
In Football, the motion caused by the fast movement of players
and camera cannot be well estimated. The use of affine-
motion model also does not help much. A tiny loss is found
under the RL test condition due to the overhead of sending
additional flags. In such sequences, one can simply turn OFF
the affine modes. Note that there is no performance loss under

1658 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 10, OCTOBER 2013

Fig. 11. Affine mode coverage in the coding frame 205 of BQSquare with
QP = 22 at the low-delay low-complexity condition.

Fig. 12. Bit comparison between HM1.0+Affine and HM1.0 in coding
Kimono with QP = 22 at the low-delay low-complexity condition.

high-efficiency encoder settings and this is due to the more
efficient coding of overhead by CABAC.

As shown in Tables II and III, the performance of
HM1.0+Affine depends on the motion types in different se-
quences. It is also true within a sequence. In Fig. 12, we
show a comparison of the relative number of bits to code
each frame of the Kimono sequence between the two coders.
Specifically, we plot the ratio of the number of bits output by
the HM1.0+Affine coder divided by the number of bits output
by the HM1.0 test model coder, and then multiply by 100 to
get a percent. In the first 140 frames, the camera is moving
parallel to the lady and the background trees are shifting to
the left. Therefore, the motion is mostly translational and the
HM1.0+Affine coder uses almost the same number of bits to
code these frames, i.e., the curve is around 100%. In the last
100 frames, the camera is moving closer to the house in the
background. Thus, deformation appears and the curve gener-
ally drops, indicating that these deformations are captured by
our affine-motion model. Thus, further improvements could
be achieved by adaptively switching ON and OFF at the slice
level.

In Table IV, our HM1.0+Affine coder is compared with
the coder proposed in [21], denoted as HM1.0+PSKIP. In
HM1.0+PSKIP, a parametric SKIP mode based on global-
motion estimation is designed and embedded into the HM1.0
coder. We used the low-complexity encoder settings as in [21]
to code five sequences. A comparison of Y BD-rate savings
achieved by the two coders is shown in Table IV, showing that
our HM1.0+Affine coder outperforms the HM+PSKIP coder
in most cases.

TABLE IV

Comparison of Y BD-Rate Savings Achieved by HM1.0+PSKIP

and HM1.0+Affine

Sequence HM1.0+PSKIP (%) HM1.0+Affine (%)
LL RL LL RL

BQSquare 2.8 3.6 29.04 22.68
City 3.6 0.5 4.73 1.88
Entertainment 0.0 0.0 2.78 1.80
PartyScene 2.3 2.8 12.92 11.38
Station2 29.1 9.7 10.73 12.52

TABLE V

Contribution and Complexity of Affine Mode

Y BD-Rate Savings (%) Encoding Time (%)
LL RL LH RH LL RL LH RH

Coder1 16.55 8.95 6.05 1.93 101.01 100.57 102.07 99.78
Coder2 25.62 15.80 11.05 3.61 206.12 207.69 199.14 202.99
Coder3 27.36 18.99 12.40 4.01 307.24 291.95 291.44 282.50
Coder2∗ 25.51 15.68 10.96 3.51 129.85 137.66 129.52 135.64
Coder3∗ 27.35 19.07 12.50 4.08 154.44 167.64 151.80 164.51
Coder4∗ 23.12 15.15 10.51 2.75 122.94 130.24 121.88 126.11

B. Contribution and Complexity of Affine Mode

Another experiment was set up to illustrate the contribution
of each affine mode and its complexity. In this experiment,
the first 100 frames of BQSquare were used for testing. For
encoder settings, fast search and fast encoder decision were
turned OFF. The experiment was conducted on an isolated
Windows 7 PC with Intel Core 2 3.0-GHz CPU and 3-GB
RAM. The results are shown in Table V, with the anchors
produced by the original HM1.0 coder.

In Coder1, the AF SKIP and AF DIRECT modes are
added to the HM1.0 coder. It is shown that these two modes
alone provide significant bitrate reductions for this test clip
without much computational overload. In Coder2, the coding
performance is further improved by adding the AF MERGE
mode. However, the encoder time is nearly doubled. When
the AF INTER mode is finally added in Coder3, thus the
HM1.0+Affine coder, only 0.4%−3.0% more bitrate reduction
are achieved. But the encoder time is further increased by
about 80%−100%. Comparing the results of Coder3 in Table
V to that in Table II, it is noticed that the differences are only
6.46% and 4.91% points1 for the low-complexity test con-
ditions and 0.66 and 0.42 for the high-efficiency conditions.
Thus, the fast search and fast encoder decision have minor
influence on the performance of the proposed scheme.

We experimentally found out that ��vi is usually small in
both AF MERGE and AF INTER modes, so the search
ranges could be reduced. The superscript ∗ in Table V in-
dicates that the search range is reduced to seven and three
units of quarter pixel for these two modes, respectively. In
Coder2* and Coder3*, the encoding time for this test clip
is significantly reduced compared to Coder2 and Coder3,
respectively, but the performance loss is negligible. Though
the AF INTER mode does not contribute much to the per-
formance of HM1.0+Affine coder, in Coder4*, we show that

1Relatively small compared to 33.82% and 23.90%.

HUANG et al.: CONTROL-POINT REPRESENTATION AND DIFFERENTIAL CODING FOR AFFINE-MOTION COMPENSATION 1659

the performance of AF INTER mode itself is similar to that
of Coder2∗ and Coder3∗.

Depending on the usage of affine-motion compensation, the
decoding time of HM1.0+Affine can be up to three times of
that in original HM1.0. The computational overload comes
from the two passes in our interpolation method. That is, a
reference region is first preinterpolated into 1/4 pixel accuracy,
and then followed by the bilinear interpolation. The reference
region is the minimum rectangle that circumscribes the de-
formed block. In this research coder, we have implemented
the affine model of (4) at full accuracy. It is expected that
more efficiency savings can result from reduced accuracy in
this area.

V. Conclusion

An affine-motion model can provide better MCP than a con-
ventional translational motion model. However, two problems
need to be solved when this is applied to the video coding
application. One is the estimation of affine parameters, con-
sidering that not only accuracy but speed is required. Another
problem is the efficient coding of the affine parameters which
is addressed in this paper. We proposed a new control-point
representation for the affine-motion model which makes it
easy to differentially encode the affine-motion matrix. Such a
scheme was proved efficient by placing four new affine modes
into the HEVC test model HM1.0 coder. The proposed affine-
motion model is general and can also be applied to other block-
based coders as well.

The estimation of the affine-motion parameters was not
specifically discussed in this paper. An iterative greedy al-
gorithm was adopted to refine the affine-motion matrix. It is
suboptimal and time consuming. However, the computational
overload could be reduced by constraining the search range.
We experimentally found that ��vi is usually very small. More
advanced estimation methods can be investigated for further
improvement. An extension of the fast motion estimation
method in block matching, enhanced predictive zonal search
[41], for example, may be an option to speed up the estimation.
It also may be possible to simultaneously search ��vi instead
of our current iterative greedy algorithm.

Acknowledgment

The authors would like to thank the anonymous reviewers
for their efficient review and helpful comments.

References

[1] G. J. Sullivan and T. Wiegand, “Video compression—From concepts to
the H.264/AVC standard,” Proc. IEEE, vol. 93, no. 1, pp. 18–31, Jan.
2005.

[2] J. W. Woods, Multidimensional Signal, Image, and Video Processing
and Coding. New York: Academic, 2011.

[3] Y. Nakaya and H. Harashima, “An iterative motion estimation method
using triangular patches for motion compensation,” in Proc. Vis. Com-
mun. Image Process., vol. 1605. 1991, pp. 546–557.

[4] Y. Nakaya and H. Harashima, “Motion compensation based on spatial
transformations,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, no. 3,
pp. 339–356, Jun. 1994.

[5] G. J. Sullivan and R. L. Baker, “Motion compensation for video
compression using control grid interpolation,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., Apr. 1991, pp. 2713–2716.

[6] C.-L. Huang and C.-Y. Hsu, “A new motion compensation method
for image sequence coding using hierarchical grid interpolation,” IEEE
Trans. Circuits Syst. Video Technol., vol. 4, no. 1, pp. 42–52, Feb. 1994.

[7] M. Yazdi and A. Zaccarin, “Interframe coding using deformable trian-
gles of variable size,” in Proc. IEEE Int. Conf. Image Process., Oct.
1997, pp. 456–459.

[8] Y. Altunbasak and A. M. Tekalp, “Closed-form connectivity-preserving
solutions for motion compensation using 2-D meshes,” IEEE Trans.
Image Process., vol. 6, no. 9, pp. 1255–1269, Sep. 1997.

[9] Y. Altunbasak and A. M. Tekalp, “Occlusion-adaptive, content-based
mesh design and forward tracking,” IEEE Trans. Image Process., vol. 6,
no. 9, pp. 1270–1280, Sep. 1997.

[10] G. Al-Regib, Y. Altunbasak, and R. M. Mersereau, “Hierarchical motion
estimation with content-based meshes,” IEEE Trans. Circuits Syst. Video
Technol., vol. 13, no. 10, pp. 1000–1005, Oct. 2003.

[11] V. Seferidis and M. Ghanbari, “Generalised block-matching motion
estimation using quad-tree structured spatial decomposition,” in Proc.
IEE Vis. Image Signal Process., vol. 141, no. 6, pp. 446–452, Dec. 1994.

[12] M. Karczewicz, J. Nieweglowski, and P. Haavisto, “Video coding using
motion compensation with polynomial motion vector fields,” Signal
Process.: Image Commun., vol. 5965, nos. 1–3, pp. 63–91, 1997.

[13] H. Li and R. Forchheimer, “A transformed block-based motion
compensation technique,” IEEE Trans. Commun., vol. 43, no. 2, pp.
1673–1676, Feb.–Mar.–Apr. 1995.

[14] M. Servais, T. Vlachos, and T. Davies, “Motion Compensation using
content-based variable-size block-matching,” in Proc. Picture Coding
Symp., 2004, pp. 1–6.

[15] R. C. Kordasiewicz, M. D. Gallant, and S. Shirani, “Encoding of affine
motion vectors,” IEEE Trans. Multimedia, vol. 9, no. 7, pp. 1346–1356,
Nov. 2007.

[16] R. Mathew and D. S. Taubman, “Quad-tree motion modeling with leaf
merging,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 10,
pp. 1331–1345, Oct. 2010.

[17] H. Lakshman, H. Schwarz, and T. Wiegand, “Adaptive motion model
selection using a cubic spline based estimation framework,” in Proc.
17th IEEE Int. Conf. Image Process., Sep. 2010, pp. 805–808.

[18] T. Wiegand, E. Steinbach, and B. Girod, “Affine multipicture motion-
compensated prediction,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 15, no. 2, pp. 197–209, Feb. 2005.

[19] X. Li, J. R. Jackson, A. K. Katsaggelos, and R. M. Mersereau,
“Multiple global affine motion model for H.264 video coding with low
bit rate,” in Proc. SPIE Image Video Commun. Process., vol. 5685. Jan.
2005, pp. 185–194.

[20] H. Yu, Z. Lin, and F. C. T. Teo, “An efficient coding scheme based on
image alignment for H.264/AVC,” in Proc. IEEE Int. Symp. Circuits
Syst., vol. 3. May 2009, pp. 629–632.

[21] A. Glantz, M. Tok, A. Krutz, and T. Sikora, “A block-adaptive skip
mode for inter prediction based on parametric motion models,” in Proc.
IEEE Int. Conf. Image Process., Sep. 2011, pp. 1201–1204.

[22] R. C. Kordasiewicz, M. D. Gallant, and S. Shirani, “Affine motion
prediction based on translational motion vectors,” IEEE Trans. Circuits
Syst. Video Technol., vol. 17, no. 10, pp. 1388–1394, Oct. 2007.

[23] H.-K. Cheung and W.-C. Siu, “Local affine motion prediction for
H.264 without extra overhead,” in Proc. IEEE Int. Symp. Circuits Syst.,
May–Jun. 2010, pp. 1555–1558.

[24] A. Muhit, M. Pickering, M. Frater, and J. Arnold, “Video coding using
elastic motion model and larger blocks,” IEEE Trans. Circuits Syst.
Video Technol., vol. 20, no. 5, pp. 661–672, May 2010.

[25] H. Yuan, Y. Chang, Z. Lu, and Y. Ma, “Model based motion vector
predictor for zoom motion,” IEEE Signal Process. Lett., vol. 17, no. 9,
pp. 787–790, Sep. 2010.

[26] H. Yuan, J. Liu, J. Sun, H. Liu, and Y. Li, “Affine model based motion
compensation prediction for zoom,” IEEE Trans. Multimedia, vol. 14,
no. 4, pp. 1370–1375, Aug. 2012.

[27] L.-M. Po, K.-M. Wong, K.-W. Cheung, and K.-H. Ng, “Subsampled
block-matching for zoom motion compensated prediction,”
IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 11,
pp. 1625–1637, Nov. 2010.

[28] H.-S. Kim, J.-H. Lee, C.-K. Kim, and B.-G. Kim, “Zoom motion
estimation using block-based fast local area scaling,” IEEE Trans.
Circuits Syst. Video Technol, vol. 22, no. 9, pp. 1280–1291, Sep. 2012.

[29] H. Huang, J. W. Woods, and Y. Zhao, “Motion compensated prediction
using partial mesh generation,” in Proc. IEEE Int. Conf. Image Process.,
Sep. 2011, pp. 1677–1680.

1660 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 10, OCTOBER 2013

[30] H. Huang, J. Woods, Y. Zhao, and H. Bai, “Affine skip and direct
modes for efficient video coding,” in Proc. IEEE Vis. Commun. Image
Process., Nov. 2012, pp. 1–6.

[31] R. C. Kordasiewicz and M. D. Gallant, “Modeling quantization of
affine motion vector coefficients,” IEEE Trans. Circuits Syst. Video
Technol., vol. 17, no. 1, pp. 86–97, Jan. 2007.

[32] G. Laroche, J. Jung, and B. Pesquet-Popescu, “RD optimized coding
for motion vector predictor selection,” IEEE Trans. Circuits Syst. Video
Technol., vol. 18, no. 12, pp. 1681–1691, Dec. 2008.

[33] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[34] K. McCann, B. Bross, and S. Sekiguchi, “High efficiency video coding
(HEVC) test model 1 (HM 1) encoder description,” Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T VCEG and ISO/IEC
MPEG, Guangzhou, China, Tech. Rep. JCTVC-C402, Oct 2010.

[35] G. J. Sullivan and R. L. Baker, “Efficient quadtree coding of images
and video,” IEEE Trans. Image Process., vol. 3, no. 3, pp. 327–331,
May 1994.

[36] A. M. Tourapis, F. Wu, and S. Li, “Direct mode coding for bipredictive
slices in the H. 264 standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 15, no. 1, pp. 119–126, Jan. 2005.

[37] F. Bossen, “Common test conditions and software reference
configurations,” Joint Collaborative Team on Video Coding (JCT-
VC) of ITU-T VCEG and ISO/IEC MPEG, Guangzhou, China, Tech.
Rep. JCTVC-C500, Oct. 2010.

[38] D. Sun, Optical flow MATLAB code (2010) [Online]. Available:
http://www.cs.brown.edu/people/dqsun/research/software.html

[39] D. Sun, S. Roth, and M. Black, “Secrets of optical flow estimation
and their principles,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern
Recognit., Jun. 2010, pp. 2432–2439.

[40] G. Bjontegaard, “Improvements of the BD-PSNR model,” ITU-T
Video Coding Experts Group (VCEG), Heinrich-Hertz-Institute, Berlin,
Germany, Tech. Rep. VCEG-AI11, Jul. 2008.

[41] A. M. Tourapis, “Enhanced predictive zonal search for single and
multiple frame motion estimation,” in Proc. SPIE Vis. Commun. Image
Process., Jan. 2002, pp. 1069–1079.

Han Huang (S’11) received the B.S. degree in
computer science from Beijing Jiaotong University,
Beijing, China, in 2007, where he is currently pur-
suing the Ph.D. degree in signal and information
processing at the Institute of Information Science.

From 2009 to 2011, he was a visiting student in the
Department of Electrical, Computer, and Systems
Engineering, Rensselaer Polytechnic Institute, Troy,
NY, USA. His current research interests include
video compression and processing.

John W. Woods (M’70–SM’83–F’88) received the
B.S., M.S., and Ph.D. degrees in electronic engineer-
ing from the Massachusetts Institute of Technology,
Cambridge, in 1965, 1968, and 1970, respectively.

Since 1976, he has been with the Department
of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, NY, USA,
where he is currently a Professor. His current re-
search is concentrated on robust and scalable video
coding for networks. He has coauthored a textbook
Probability, Statistics, and Random Processes for

Engineers with H. Stark (4th ed. Englewood Cliffs, NJ: Prentice-Hall, 2012)
and one graduate textbook Multidimensional Signal, Image, and Video Pro-
cessing and Coding (1st ed. New York: Academic, 2006) with a second edition
in 2012. His current research interests include image and video estimation,
restoration, filtering, and specially video compression coding. He has authored
or coauthored more than 100 papers in these fields.

Dr. Woods was the corecipient of the 1976 and 1987 Senior Paper Award of
what is now the IEEE Signal Processing Society. He served as the Technical
Program Co-Chairman for the 1st IEEE International Conference on Image
Processing in 1994. He received a Technical Achievement Award from the
IEEE Signal Processing Society in 1994. He was a founding member of the
Editorial Board of the IEEE Transactions on Circuits and Systems for

Video Technology. He received an IEEE Centennial Medal in 2001. From

2001 to 2006, he was a member of the ISO standards Committee on MPEG,
and a member of the Digital Cinema Initiatives Compression Committee in
2004.

Yao Zhao (M’06–SM’12) received the B.S. degree
from Fuzhou University, Fuzhou, China, in 1989,
and the M.E. degree from Southeast University,
Nanjing, China, in 1992, both in radio engineering,
and the Ph.D. degree from the Institute of Informa-
tion Science, Beijing Jiaotong University (BJTU),
Beijing, China, in 1996.

In 1998, he was an Associate Professor at BJTU,
where he became a Professor in 2001. From 2001 to
2002, he was a Senior Research Fellow in the Infor-
mation and Communication Theory Group, Faculty

of Information Technology and Systems, Delft University of Technology,
Delft, The Netherlands. He is currently the Director of the Institute of Informa-
tion Science, BJTU. He is currently leading several national research projects
such as 973 Program, 863 Program, and the National Science Foundation
of China. His current research interests include image/video coding, digital
watermarking and forensics, and video analysis and understanding.

Dr. Zhao serves on the editorial boards of several international journals,
including as an Area Editor of Signal Processing: Image Communication
(Elsevier), and as an Associate Editor of Circuits, System & Signal Processing
(Springer). He was the recipient of National Science Foundation of China for
Distinguished Young Scholars in 2010.

Huihui Bai received the Ph.D. degree in signal
and information processing from Beijing Jiaotong
University (BJTU), Beijing, China, in 2008.

She is currently an Associate Professor at the In-
stitute of Information Science, BJTU. She has been
involved in research and development work in video
coding technologies and standards such as high-
efficiency video coding, 3-D video compression,
multiple description video coding, and distributed
video coding. She is leading or participating in
several research projects such as 973 Program, 863

Program, the National Natural Science Foundation of China, Beijing Natural
Science Foundation, and Jiangsu Provincial Natural Science Foundation.

